

The Permeation of Ammonium through a Voltage-independent K^+ Channel in the Plasma Membrane of Rye Roots

P.J. White

Department of Cell Physiology, Horticulture Research International, Wellesbourne, Warwick, CV35 9EF

Received: 16 October 1995/Revised 12 March 1996

Abstract. Nitrogen is available to the plant in the form of NH_4^+ in the soil solution. Here it is shown that a voltage-independent K^+ channel in the plasma membrane of rye (*Secale cereale* L.) roots is permeable to NH_4^+ . The channel was studied following its incorporation into planar 1-palmitoyl-2-oleoyl phosphatidyl ethanolamine bilayers. The unitary conductance of the channel was greater when assayed in the presence of 100 mM NH_4Cl than 100 mM KCl. However, the probability of finding the channel open (P_o) was lower in the presence of 100 mM NH_4Cl ($P_o = 0.63$) than in 100 mM KCl ($P_o = 0.8$), suggesting that P_o can be regulated by the (permeant) ions present in solution. When assayed in equimolar concentrations of NH_4Cl (*cis*) and KCl (*trans*), the zero-current (reversal) potential for the channel (E_{rev}) exhibited a complex concentration dependence. At low cation concentrations, the apparent permeability of NH_4^+ relative to K^+ (P_{NH_4}/P_K) was greater than 1.0. However, as the cation concentration was increased, P_{NH_4}/P_K initially decreased to a minimum of 0.95 at 3 mM before increasing again to a maximum of 1.89 at 300 mM. At cation concentrations above 300 mM, P_{NH_4}/P_K decreased slightly. This implies that the pore of the channel can be occupied by more than one cation simultaneously. Ammonium permeation through the pore was simulated using a model which is composed of three energy barriers and two energy wells (the ion-binding sites). The model (3B2S) allowed for single-file permeation, double cation occupancy, ion-ion repulsion within the pore and surface potential effects. Results indicated that energy peaks and energy wells were situated asymmetrically within the electrical distance of the pore, that cations repel each other within the pore and that the vestibules to the pore contain negligible surface charge. The energy profile

obtained for NH_4^+ is compared with ones obtained for K^+ and Na^+ . This information allows the fluxes through the K^+ channel of the three major monovalent cations present in the soil solution to be predicted.

Key words: Ammonium (NH_4^+) — K^+ -channel — Permeation — Planar Lipid Bilayer — Plasma membrane — Rye (*Secale cereale* L.)

Introduction

Ammonium is a major source of plant nitrogen. Knowledge of the mechanism(s) by which NH_4^+ is taken up by plant roots is therefore of basic importance in understanding the nitrogen nutrition of plants.

Unidirectional NH_4^+ influx into plant cells, measured over a period of less than 15 min using labeled ammonium ($[^{13}N]NH_4^+$ or $[^{15}N]NH_4^+$) or the ammonium analogue methylammonium ($[^{14}C]CH_3NH_3^+$), follows “dual-isotherm” kinetics (either approximating the sum of two Michaelis-Menten components or a Michaelis-Menten plus a linear component) as the NH_4^+ or $CH_3NH_3^+$ concentration in the extracellular medium is increased (Bertl, Felle & Bentrup, 1984; Deane-Drummond, 1986; Presland & McNaughton, 1986; Vale, Volk & Jackson, 1988; Wang et al., 1993b; Kosola & Bloom, 1994). This is thought to represent the sum of two transport mechanisms: (i) an “active” transport mechanism (Mechanism I), which operates at low NH_4^+ concentrations (<1 mM; K_m between 32 μ M and 188 μ M) and transports NH_4^+ into the cell against its electrochemical gradient with a capacity (V_{max}) that increases with decreasing external NH_4^+ supply and tissue NH_4^+ concentration (e.g., Wang et al., 1993b), and (ii) a passive, electrophoretic transport mechanism (Mechanism II), which facilitates NH_4^+ influx at higher NH_4^+ concentrations (>1 mM).

At present, interest is focused on the molecular identity of these NH₄⁺-transport mechanisms. Recently, a gene (*AMT1*) encoding a high-affinity NH₄⁺ uptake system was identified by functional complementation of a mutant yeast strain defective in NH₄⁺ uptake (*Saccharomyces cerevisiae* strain 26972c) with cDNA from *Arabidopsis thaliana* (Ninnemann, Jauniaux & Frommer, 1994). Methylammonium uptake into mutants expressing *AMT1* exhibited saturation kinetics with a *K_m* of 60 μ M, was competitively inhibited by ammonium with a *K_i* of about 10 μ M and was inhibited by protonophores (Ninnemann et al., 1994). The *AMT1* gene was highly related to an NH₄⁺ transporter from yeast (Marini et al., 1994) and sequence homologies to genes of bacterial and animal origin indicate that this type of transporter is conserved over a broad range of organisms. The low affinity NH₄⁺ uptake system is thought to be mediated by an ion channel.

It has often been suggested that NH₄⁺ and K⁺ might share the same transport mechanisms (Epstein, 1972; Marschner, 1995). This hypothesis was originally proposed on the basis of identical atomic radii and chemical similarity of K⁺ and NH₄⁺, and is supported by circumstantial evidence that K⁺ and NH₄⁺ exhibit mutual competition for transport and that the concentration-dependence of K⁺ and NH₄⁺ influx are similar.

Like NH₄⁺ influx, K⁺ influx into plant cells exhibits a biphasic response to increasing K⁺ concentration (reviewed by Kochian & Lucas, 1988). Two high-affinity transport mechanisms mediating K⁺ influx at the plasma membrane have been identified. Both are symporters, and K⁺ influx is directly coupled to the influx of either H⁺ or Na⁺. Electrophysiological analysis of *Arabidopsis* root-cell protoplasts has demonstrated the presence of a H⁺/K⁺ symport (Maathuis & Sanders, 1994) and a gene (*HKT1*) encoding a Na⁺/K⁺ symport has been identified by functional complementation of a mutant yeast strain defective in K⁺ uptake (*Saccharomyces cerevisiae* strain CY162) with cDNA from wheat roots (Schachtman & Schroeder, 1994; Rubio, Gassmann & Schroeder, 1995). When expressed in *Xenopus* oocytes and assayed at an extracellular cation concentration of 1 mM, HKT1 mediated NH₄⁺ influx at approximately 15% the rate of K⁺ influx (Schachtman & Schroeder, 1994). Thus, HKT1 may be responsible for a component of high-affinity NH₄⁺ influx. Low-affinity, electrophoretic K⁺ influx is likely to be mediated by an inwardly-rectifying or a voltage-independent K⁺ channel (Maathuis & Sanders, 1993; Kochian & Lucas, 1993; Gassmann et al., 1993; Schroeder, Ward & Gassmann, 1994). Several inwardly-rectifying K⁺ channels exhibit an appreciable permeability to NH₄⁺. These include the inwardly-rectifying K⁺ channel(s) in protoplasts from root hairs of wheat (Gassmann & Schroeder, 1994) and the inwardly-rectifying KAT1 K⁺ channel (Schachtman et al., 1992; Bertl et al., 1995; Cao

et al., 1995; Uozumi et al., 1995). It is not known whether voltage-independent K⁺-channels are similarly permeable to NH₄⁺.

Recently the gating kinetics and permeability of a voltage-independent K⁺ channel in the plasma membrane of rye roots were documented (White & Tester, 1992; White & Lemtiri-Chlieh, 1995; White & Ridout, 1995). This channel is selective for monovalent cations and, when assayed at concentrations of 100 mM, the selectivity sequence determined from measurements of both unitary conductance and relative permeability was Rb⁺ \geq K⁺ > Cs⁺ > Na⁺ > Li⁺ (White & Tester, 1992). The channel has a multiple ion residency pore, for which the spatial parameters and energy profiles for the permeation of both K⁺ and Na⁺ have been determined (White & Ridout, 1995). Here it is shown that NH₄⁺ also permeates the channel and the energy profile for NH₄⁺ permeation has been estimated. Thus, it is now possible to predict the fluxes of the three major monovalent cations present in the soil solution through this channel. Under physiological conditions, this channel might facilitate NH₄⁺ influx across the plasma membrane of root cells in response to the electrical potential generated by the plasma-membrane H⁺-ATPase.

Materials and Methods

PLANT MATERIAL AND PLASMA MEMBRANE ISOLATION

Rye (*Secale cereale* L. cv. Rheidol) was grown hydroponically in a complete nutrient medium containing 400 μ M K⁺ and 240 μ M NH₄⁺ as described by White (1993). Plants were harvested 14 days after sowing.

Plasma-membrane vesicles were obtained by aqueous-polymer two-phase partitioning of a microsomal fraction from rye roots. The procedure followed White & Tester (1992) except that the homogenization medium additionally included 2 mM phenylmethyl sulfonylfluoride, 4 mM dithioerythritol and 0.5% (w/v) polyvinylpyrrolidone as protectants. Plasma-membrane vesicles were stored at a concentration of 1 mg protein ml⁻¹ at -20 °C in a medium containing 5 mM 2-[2-hydroxy-1, 1-bis(hydroxymethyl)ethyl]-amino ethanesulfonic acid (Tes), titrated to pH 7.5 using N-methyl-D-glucamine (NMDG).

ION CHANNEL RECORDINGS

Electrical recordings of ion channel activity were obtained following the incorporation of plasma-membrane vesicles into planar lipid bilayers (PLB) composed of 30 mM synthetic 1-palmitoyl-2-oleoyl phosphatidylethanolamine (PE) dispersed in n-decane, as described by White and Tester (1992). The bilayer (0.2 mm in diameter) separated solutions of 500 μ l contained within a styrene copolymer cup (the *cis* chamber) and 5 ml contained within an outer Perspex container (the *trans* chamber). All aqueous solutions were filtered (pore diameter 0.2 μ m) and buffered with 5 mM Tes, titrated to pH 7.5 using NMDG. Plasma-membrane vesicles were added to the *cis* chamber and fused to bilayers by stirring in the presence of a (*cis:trans*) 410:100 mM KCl or NH₄Cl gradient. When channel activity was detected, unfused vesicles

were removed by perfusing the *cis* chamber with either 100 mM KCl or 100 mM NH₄Cl. Further changes in the identity or concentration of the permeant cation were effected either by perfusing a chamber with 30 volumes of the required concentration of cation chloride or by the addition of an appropriate volume of 3 M NH₄Cl or KCl. Experiments were performed at room temperature (20 to 24 °C).

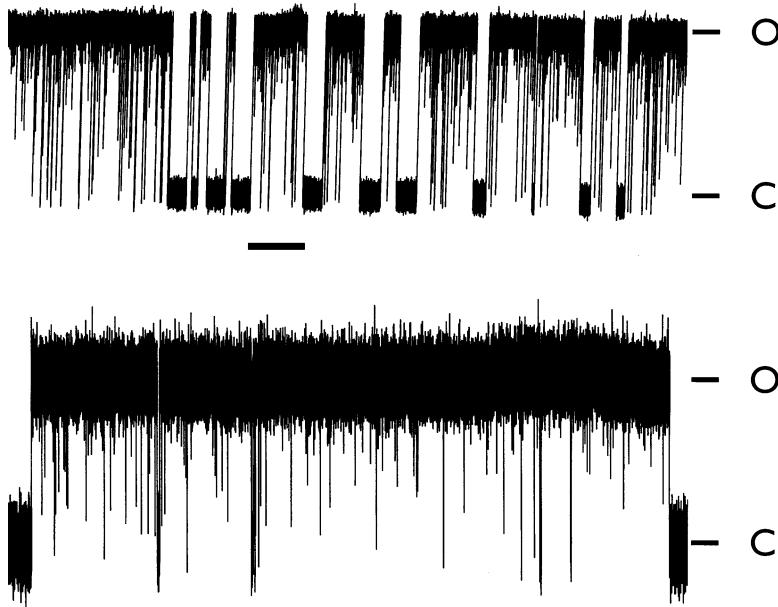
Current was monitored under voltage-clamp conditions using a low noise operational amplifier with frequency compensation, connected to the bilayer chambers by calomel electrodes and 3 M KCl salt bridges. Data were stored unfiltered on Digital Audio Tape (DTC-1000ES; 44.1 kHz sampling; Sony, Japan) and simultaneously displayed on a digital storage oscilloscope (Gould 1602; Gould Electronics, Hainault, Essex, UK). Membrane potentials were recorded *cis* with respect to *trans*, which was held at ground. Since plasma-membrane ion channels become oriented with their cytoplasmic face exposed to the *trans* chamber (White & Tester, 1992), the sign of the membrane potential is opposite to that conventionally used in electrophysiological studies on plant cells *in vivo*. Movement of cations from the *cis* to the *trans* chamber is indicated by a positive current and appears as an upward deflection in current traces. The amplitude of single channel currents was determined directly from channel recordings filtered at 100 Hz using an 8-pole low pass Bessel filter (902LPF, Frequency Devices, Haverhill, MA).

The probability of the channel being open at any given voltage (the channel open probability; P_o) and the time constants of channel open- and closed-states at 60 mV were determined using a microcomputer-based system after appropriate digitization (Cambridge Electronic Design, Cambridge, UK). Recordings of channel activity were replayed, filtered using an 8-pole low pass Bessel filter (902LPF) and sampled by the computer. The P_o of the channel was calculated from current frequency distributions of electrical recordings filtered at 100 Hz and sampled at 500 Hz obtained over a period equivalent to recording a single channel for 25 to 40 min, as described by White and Tester (1992). Kinetic time constants were calculated as described by White and Tester (1992), using an electrical recording of an individual channel of 7.5 min duration obtained at 60 mV in symmetrical 100 mM NH₄Cl, which was filtered at 500 Hz and sampled at 2.5 kHz. To facilitate comparisons with previous studies (White & Tester, 1992) it was assumed that the channel exhibited at least two open states, with time constants τ_{o1} and τ_{o2} , and three closed states, with time constants τ_{c1} , τ_{c2} and τ_{c3} , subscripts being numbered successively from the shortest to the longest time constant. Duration frequency distributions were fitted by maximum likelihood and estimates of time constants are given as mean \pm SE.

MATHEMATICAL MODELING

Estimates of energy profiles for permeant monovalent cations and channel spatial characteristics were obtained using the FORTRAN computer program AJUSTE (Alvarez, Villarroel & Eisenman, 1992) as described by White and Ridout (1995). Parameters were estimated by unweighted least squares. The model chosen (a 3B2S model) had energy profiles consisting of three energy barriers and two ion-binding sites (energy wells), and allowed for single-file permeation, double cation occupancy, ion-ion repulsion and surface potential effects. The energies of the unoccupied channel at zero voltage (in terms of multiples of the thermal energy, RT) were defined by three peaks G1, G2 and G3, and two wells, U1 and U2, with the postscript referring to their position relative to the *cis* compartment. The distances D1 to D5 refer to the position of successive peaks and wells in the electrical field relative to the *cis* compartment. The effects of ion-ion interactions (electrostatic and/or allosteric) were simulated by the addition of an energy factor to the peaks and wells adjacent to an occupied well.

This varied inversely with the electrical distance (d) from the occupied well to mimic a coulombic interaction, and was calculated as A/d , where A is the ionic-repulsion energy parameter. Two parameters (R_{scis} and R_{strans}) were included in the model to describe surface charge effects. These parameters correspond to the radii of circles (expressed in angstrom, Å units) containing one electron charge in the *cis* and *trans* vestibules of the pore respectively, from which the fixed surface charge densities at the vestibule of the pore can be calculated ($\sigma = e/\pi R^2$). Since the PE bilayer is essentially uncharged under the experimental conditions, surface potentials are assumed to arise from charged amino acid side chains and/or nonprotein domains forming part of the molecular structure of the channel. They are calculated according to the Gouy-Chapman double-layer theory and therefore represent charged planar surfaces. The effect of applied voltage was modeled by addition of the zero-voltage energy to an electrical work term proportional to the valence of the ion and electrical distance. It was assumed that the electrical field, which is the algebraic sum of the electrical fields induced by the applied voltage and the asymmetry of the surface potential, dropped linearly through the energy profile and it was added point by point to compute the free energy of each peak and well. Rate constants for transitions between permissible states were formulated by the standard Eyring rate theory expression equal to the product of a pre-exponential term, kT/h , (where k/h is Boltzmann's constant divided by Planck's constant) and an exponential function of the energy difference, $\exp(\Delta G/RT)$. A similar expression was used for bimolecular rate constants describing the entry of ions from the internal or external solutions, except that the pre-exponential factor was also multiplied by the molar activity of the ion in solution divided by the molar concentration of water (55.5 M). Thus, the reference energy state of the model corresponds to 55.5 M solution. To compare the energy values reported here to models that use a 1 M reference state, 4.02 RT units must be added to the values in the Table.


RELATIVE IONIC PERMEABILITIES

Apparent relative ionic permeabilities were defined by the zero-current (reversal) potential (E_{rev}), determined by linear interpolation, when contrasting salt concentrations or ionic species were present in the *cis* and *trans* chambers, according to the conventional Goldman-Hodgkin-Katz (GHK) formulation (Hille & Schwarz, 1978). All ionic species were corrected for activities using published activity coefficients (Robinson & Stokes, 1959). Although ion activities are used exclusively for all calculations, for ease of discussion the concentrations given in the text and figures are absolute concentrations unless indicated. Data are from characteristic experiments and are representative of at least two experiments.

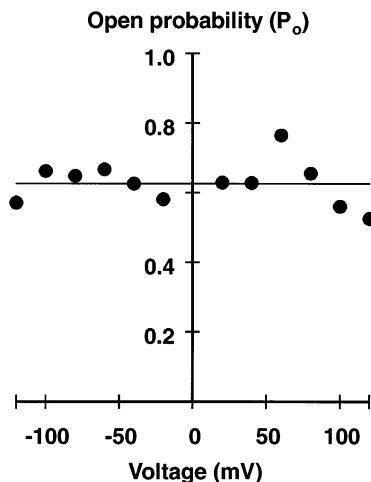
Results

CHANNEL-GATING KINETICS AND OPEN PROBABILITY

When assayed in the presence of symmetrical 100 mM NH₄Cl, channel gating (Fig. 1) resembled that observed in the presence of 100 mM KCl (White & Tester, 1992). However, the frequency of transitions between open- and closed-states of the channel was much greater in the presence of NH₄Cl than in the presence of KCl (226 events/min were detected in NH₄Cl compared to 35 events/min in KCl). In the presence of NH₄Cl, there was an apparent absence of brief openings (τ_{o1}) and τ_{o2} was

Fig. 1. Electrical recordings of a PE bilayer containing a single K⁺ channel from the plasma membrane of rye roots assayed in symmetrical 100 mM NH₄Cl at a voltage of 60 mV. The top recording represents 6 min of data filtered at 100 Hz and illustrates primarily the long closures of the channel (τ_{c3}). The bottom recording represents 30 sec of data filtered at 500 Hz illustrating the brief closures (τ_{c1} and τ_{c2}) of the channel, which occurred during the burst of activity indicated by the bar beneath the top recording. The unitary current through the channel was 3.9 pA. *o*, channel open state; *c*, channel closed state.

shorter (420 ± 15.1 msec) than in the presence of KCl (5.7 sec; White & Tester, 1992). By contrast, the time constants of all three closed states were similar in the presence of NH₄Cl and KCl. The mean durations of the shorter closures (τ_{c1} and τ_{c2}) were 0.9 ± 0.04 ms and 30 ± 3.8 msec in the presence of NH₄Cl compared to 1.1 msec and 51 msec in the presence of KCl (White & Tester, 1992). The mean duration of the longest closures, τ_{c3} , was estimated at about 11 sec in the presence of NH₄Cl, a value similar to τ_{c3} obtained in the presence of KCl (10.6 sec; White & Tester, 1992).


When assayed in the presence of symmetrical 100 mM NH₄Cl the P_o of the channel was voltage-independent and approximated 0.63 (Fig. 2). This compares with a value of approximately 0.8 for P_o assayed in the presence of symmetrical 100 mM KCl (White & Tester, 1992) and is consistent with the longer τ_{o2} and shorter τ_{c2} observed in the presence of 100 mM KCl. These results suggest that channel gating and P_o may be regulated by the (permeant) ions present in solution, but this phenomenon was not investigated further.

UNITARY CONDUCTANCE

The unitary chord conductance (determined between ± 30 mV) in the presence of symmetrical 100 mM NH₄Cl was 61.3 ± 1.1 pS (mean \pm SE, 15 experiments). This value is greater than that recorded in the presence of

symmetrical 100 mM KCl (White & Tester, 1992; White, 1995; White & Ridout, 1995; White & Lemtiri-Chlieh, 1995). Previous estimates of unitary chord conductance in the presence of symmetrical 100 mM KCl vary between 38.5 pS and 54.4 pS, but the larger conductances obtained recently at HRI East Malling are a more appropriate comparison (see White & Ridout, 1995 for a discussion). When determined for individual channels in the present experiments, the ratio of unitary chord conductances in the presence of symmetrical 100 mM NH₄Cl relative to 100 mM KCl was 1.27. This value is consistent with the unitary chord conductances obtained in the presence of symmetrical 100 mM KCl in previous modeling studies at HRI East Malling (White & Ridout, 1995).

When assayed in the presence of symmetrical NH₄Cl solutions the unitary current through the channel exhibited complex relationships with voltage (Fig. 3). At low NH₄Cl concentrations (<10 mM) the unitary current was greater at negative voltages than at the corresponding positive voltages. However, at higher NH₄Cl concentrations (>10 mM) the converse was true. In addition, at low NH₄Cl concentrations the unitary current tended to saturate at extreme voltages, but at NH₄Cl concentrations above about 3 mM the unitary conductance increased with increasing voltage. The unitary chord conductance of the channel (determined between ± 30 mV) increased with increasing NH₄Cl concentrations (Fig. 3*I*). It did not follow Michaelis-Menten kinetics.

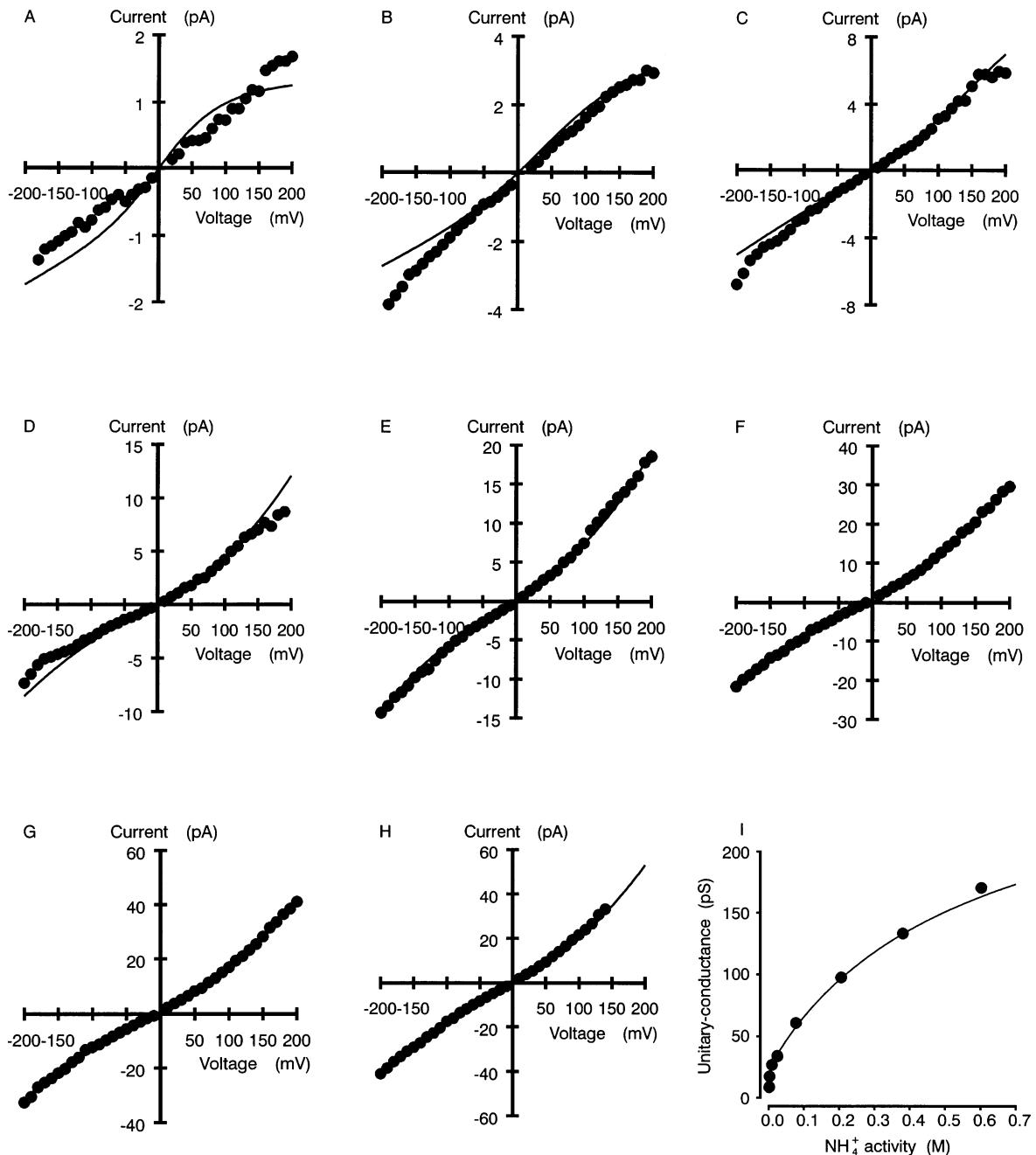
Fig. 2. The relationship between the probability of finding the K⁺ channel from the plasma membrane of rye roots in an open state (P_o) and voltage, when channel activity was assayed in the presence of symmetrical 100 mM NH₄Cl. Data were obtained from electrical recordings of a single PE bilayer containing from 1 to 5 individual channels during a characteristic experiment performed over a period equivalent to recording a single channel for 25 to 40 min at each voltage. The line represents the mean P_o .

This has also been observed for both K⁺ and Na⁺ permeation of the channel (White & Ridout, 1995) and indicates that the channel has a multiple ion-residency pore structure (Hille, 1992).

RELATIVE IONIC PERMEABILITIES, P_{Cl}:P_{NH4} AND P_{NH4}:P_K

When the NH₄Cl concentration on the *trans* side of the channel was held constant whilst the NH₄Cl concentration on the *cis* side of the channel was varied between 1 mM and 1 M (Fig. 4), E_{rev} varied according to the Nernst equation (Fig. 4*I*). This indicates that the channel was ideally selective for NH₄⁺ over Cl⁻.

When assayed in equimolar concentrations of NH₄Cl (*cis*) and KCl (*trans*), E_{rev} exhibited a complex concentration-dependence (Fig. 5*I*). This phenomenon has also been observed in the presence of equimolar (*cis:trans*) NaCl:KCl (White & Ridout, 1995) and provides further evidence that the pore structure of the channel can be occupied simultaneously by more than one cation. When the cation concentration was 1 mM the apparent permeability of NH₄⁺ relative to K⁺ (P_{NH4}/P_K) was 1.25. As the cation concentration was increased, P_{NH4}/P_K initially decreased to 0.95 at 3 mM but then increased again to a maximum of 1.89 at 300 mM. At cation concentrations above 300 mM, P_{NH4}/P_K decreased slightly.


ENERGY-BARRIER MODELS FOR MONOVALENT CATION PERMEATION

The permeation of K⁺ and Na⁺ through the K⁺ channel in the plasma membrane of rye roots has recently been

modeled using an energy profile which is composed of three energy barriers and two ion binding sites (or energy wells), which allows for single-file permeation, double cation occupancy, ion-ion repulsion within the pore and surface potential effects (White & Ridout, 1995). This is called a 3B2S model. The 3B2S model was fitted to the data obtained under the contrasting ionic conditions employed in this paper (Table). Parameters were estimated using data either from experiments performed in the presence of NH₄Cl alone (Figs. 3 and 4) or from all experiments (Figs. 3–5). It was noted previously that at high concentrations E_{rev} in the presence of equimolar NH₄Cl (*cis*) and KCl (*trans*) deviated significantly from zero (Fig. 5*I*). This implies that the central energy peaks for K⁺ and NH₄⁺ differ (Hille & Schwarz, 1978; Hille, 1992). The difference in the central energy peaks for NH₄⁺ and K⁺ can be calculated from the P_{NH4}/P_K (1.58) obtained under bi-ionic 1 M NH₄⁺ (*cis*):K⁺ (*trans*), as described by Hille (1992). The central energy peak for NH₄⁺ was 0.46 RT lower than for K⁺ and, since the central energy peak for K⁺ was fixed at -5.00 RT for the reasons given by White & Ridout (1995), the central energy peak for NH₄⁺ was fixed at -5.46 RT.

Estimates of the energy profile for NH₄⁺ permeation obtained from experiments in which NH₄⁺ was the only cation present implied that the *cis* energy peak (G1) was lower than the *trans* energy peak (G3) and that the central energy peak (G2) was the lowest. The depths of both the *cis* energy well (U1) and the *trans* energy well (U2) for NH₄⁺ permeation were similar, but U2 was slightly deeper than U1. The dissociation binding constants (K_d) for NH₄⁺, referenced to the more conventional 1 M solution concentration, approximated 4.6 mM (U1) and 3.5 mM (U2) in an unoccupied channel at zero volts. Both the energy peaks and the energy wells for NH₄⁺ permeation were situated asymmetrically within the electrical distance of the pore, as was observed previously for both K⁺ and Na⁺ permeation (Table; White & Ridout, 1995). Notably, the *trans* energy well was closer to the center of the pore than its *cis* counterpart. As was also observed previously, the vestibules to the pore contained negligible surface charge and cations repelled each other within the pore. A cation residing in an energy well would raise the energy of the adjacent, unoccupied well by 4.24 RT, thereby reducing the affinity for NH₄⁺ binding by a factor of 69.4. This generates a characteristic relationship between unitary conductance and cation concentration (Hille & Schwarz, 1978; Hille, 1992). The predicted unitary conductance of the channel (determined between ± 30 mV; Fig. 3*I*) initially increased as the NH₄⁺ activity was increased, reaching a maximum of 286 pS at (unphysiological) NH₄⁺ activities between 12 and 35 M, before declining as the NH₄⁺ activity was increased further.

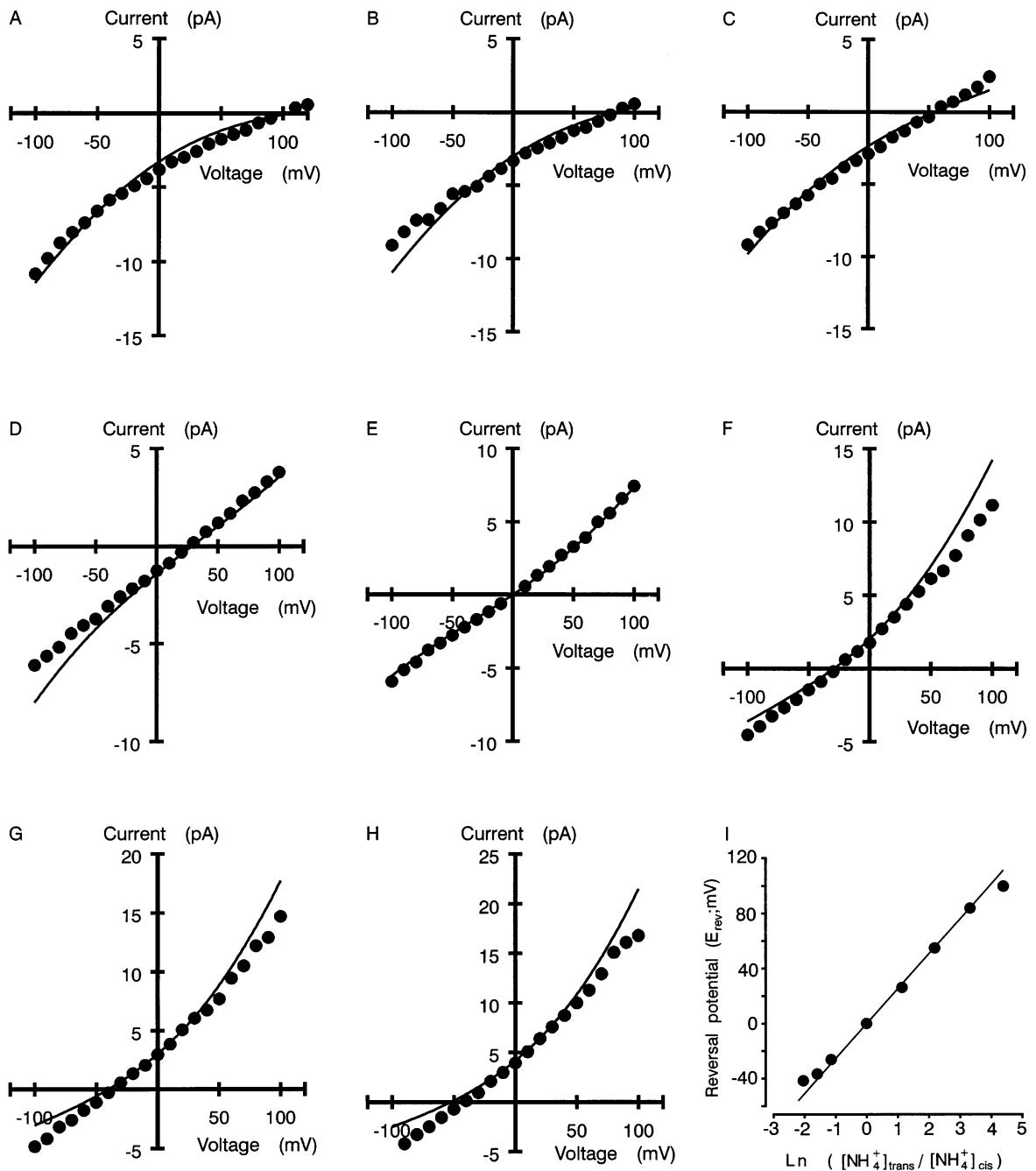

Estimates of parameters for NH₄⁺ permeation did not change when experiments in the presence of NH₄Cl

Fig. 3. (A-H) Unitary current vs. voltage relationships for the K⁺ channel in the plasma membrane of rye roots incorporated into a PE bilayer. Solutions contained (cis:trans) (A) 1:1, (B) 3:3, (C) 10:10, (D) 30:30, (E) 100:100, (F) 300:300, (G) 600:600 and (H) 1000:1000 mM NH₄Cl. (I) The relationship between unitary chord conductance (determined between ± 30 mV) and NH₄⁺ activity. The curves are derived from a theoretical 3B2S model using the parameters for NH₄⁺ shown in the Table under 'multiple cationic species.'

alone were combined with experiments performed under bi-ionic equimolar NH₄Cl (cis):KCl (trans). Furthermore, estimates of parameters for K⁺ permeation in the latter experiments were similar to those obtained previously (Table; White & Ridout, 1995). Comparing the energy profile for NH₄⁺ permeation with that for K⁺ permeation suggests that both the cis and central energy peaks

are similar for NH₄⁺ and K⁺, that the central energy peak is lower for NH₄⁺ than for K⁺, that the cis energy well for NH₄⁺ is equal to or shallower than that for K⁺ and that the trans energy well is deeper for NH₄⁺ than K⁺. Comparing the energy profile for NH₄⁺ permeation with that for Na⁺ permeation suggests that both the cis and central energy peaks are lower for NH₄⁺ than for Na⁺, that the trans

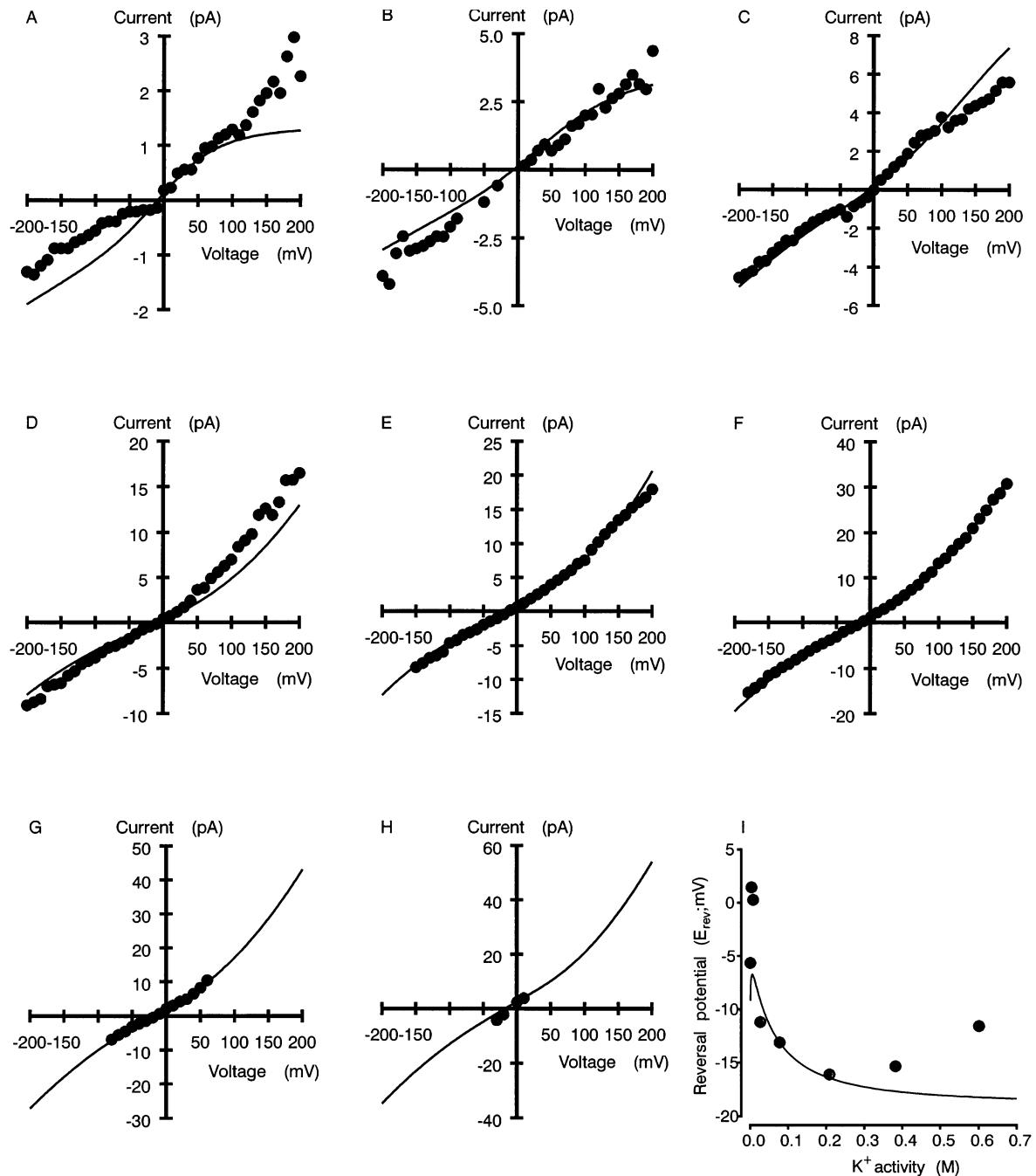


Fig. 4. (A-H) Unitary current vs. voltage relationships for the K⁺ channel in the plasma membrane of rye roots incorporated into a PE bilayer. Solutions contained (*cis:trans*) (A) 1:100, (B) 3:100, (C) 10:100, (D) 30:100, (E) 100:100, (F) 364:100, (G) 600:100 and (H) 1000:100 mM NH₄Cl. The curves are derived from a theoretical 3B2S model using the parameters for NH₄⁺ shown in the Table under 'multiple cationic species.' (I) The relationship between the measured reversal potential (E_{rev}) and the natural logarithm of the NH₄⁺ gradient imposed ($[NH_4^+]_{trans}/[NH_4^+]_{cis}$, expressed in terms of activities). The line represents the Nernst potential for ideal NH₄⁺ selectivity.

energy peak is similar for NH₄⁺ and Na⁺, and that both the *cis* and *trans* energy wells are deeper for NH₄⁺ than for Na⁺.

The apparent selectivity of the channel is determined by differences in the energy-barrier profiles for monova-

lent cations (Hille & Schwarz, 1978). Such differences account for the complex relationships between E_{rev} and monovalent cation concentration when assayed in the presence of equimolar (*cis:trans*) NaCl:KCl (see White & Ridout, 1995) and NH₄Cl:KCl (Fig. 5I). This can be

Fig. 5. (A-H) Unitary current vs. voltage relationships for the K⁺ channel in the plasma membrane of rye roots incorporated into a PE bilayer. Solutions contained equimolar NH₄Cl (*cis*) and KCl (*trans*) at concentrations of (A) 1, (B) 3, (C) 10, (D) 30, (E) 100, (F) 300, (G) 600 and (H) 1,000 mM. (I) The relationship between reversal potential (E_{rev}) and the K⁺ activity in the *trans* chamber. The curves are derived from a theoretical 3B2S model using the parameters shown in the Table under 'multiple cationic species' (NH₄⁺ with K⁺).

illustrated by reference to the relationship between E_{rev} and cation concentration in the presence of equimolar (*cis:trans*) NH₄Cl:KCl (Fig. 5I). Theoretically, at low cation concentrations $P_{NH_4}:P_K$ depends only on the heights of the highest energy peaks. Since the highest energy peaks are similar for NH₄⁺ and K⁺, $P_{NH_4}:P_K$ approximates unity under these conditions (Fig. 5I). As the

cation concentration is increased, the heights of all energy peaks and the depths of all energy wells influence E_{rev} . In this region, differences in the depths of the *trans* energy well and the heights of the central energy peak between NH₄⁺ and K⁺ will determine E_{rev} . Thus $P_{NH_4}:P_K$ alters. Finally, at high cation concentrations, E_{rev} is determined solely by the relative heights of the central

Table. Estimated parameters for the 3B2S double ion-residency model for NH₄⁺, K⁺ and Na⁺ permeation of the K⁺ channel in the plasma membrane of rye roots

	Single species		Multiple cationic species		
	NH ₄ ⁺	NH ₄ ⁺	K ⁺	K ⁺	Na ⁺
G1	2.51 ± 0.08	2.69 ± 0.10	3.56 ± 0.59	1.36 ± 0.16	3.55 ± 0.09
G2	-5.46	-5.46	-5.00	-5.00	-5.00
G3	4.13 ± 0.10	4.16 ± 0.10	3.96 ± 0.24	4.42 ± 0.12	4.47 ± 0.19
U1	-9.40 ± 0.10	-9.14 ± 0.11	-9.40 ± 0.32	-11.48 ± 0.23	-7.99 ± 0.39
U2	-9.68 ± 0.15	-9.49 ± 0.14	-6.93 ± 0.49	-6.86 ± 0.15	-8.39 ± 0.29
A	1.40 ± 0.05	1.39 ± 0.05		1.85 ± 0.09	
D1	0.00				
D2	0.25				
D3	0.50				
D4	0.58 ± 0.01	0.59 ± 0.01		0.60 ± 0.02	
D5	0.92 ± 0.01	0.94 ± 0.01		0.93 ± 0.03	
R _{scis}	1,000 ^a	176.9 ± 156.0		1,000 ^a	
R _{trans}	43.3 ± 2.8	40.9 ± 2.5		68.6 ± 15.4	
N	477	729		264	
SUMSQ	268.4	522.4		7.5	

Parameters were estimated from unitary current vs. voltage relationships obtained in the presence of either a single permeant cationic species (Figs. 3 and 4 for NH₄⁺) or up to two cationic species (Figs. 3,4,5 for NH₄⁺ and K⁺; Fig. 7 in White and Ridout (1995) for K⁺ and Na⁺). Standard errors are given for parameters that were free to vary. SUMSQ is the residual sum of squares and N is the number of experimental points. The solution reference state is 55.5 M. Parameters for bi-ionic K⁺ and Na⁺ are taken from White and Ridout (1995).

^a Parameter estimates are on the boundary of the parameter space.

energy peak and, since this is lower for NH₄⁺ than for K⁺, P_{NH₄}:P_K is greater than unity at extreme concentrations. Similarly, when determined in the presence of equimolar (*cis:trans*) NH₄Cl:NaCl, P_{NH₄}:P_{Na} is expected to be greater than unity at low cation concentrations since the extreme energy barriers are lower for NH₄⁺ than for Na⁺, at medium cation concentrations P_{NH₄}:P_{Na} will decrease but remain greater than unity, and at high cation concentrations P_{NH₄}:P_{Na} will approximate 1.6 since it is determined by the difference in heights of the central energy peak.

Discussion

ENERGY-BARRIER MODELS FOR MONOVALENT CATION PERMEATION

A 3B2S model has been used to describe the permeation of NH₄⁺, K⁺ and Na⁺ through the pore of a K⁺ channel in the plasma membrane of rye roots. Parameters for spatial characteristics of the channel, ionic interactions

within the pore and energy profiles for individual cations are sufficient to simulate the unitary current vs. voltage (*I/V*) relationships obtained under a wide variety of ionic conditions (Figs 3–5; White & Ridout, 1995). However, some *I/V* relationships observed in the present paper did not correspond exactly with the model predictions. For example, the model predicts current saturation at high voltages at cation concentrations below 3 mM, which we did not observe in equimolar (*cis:trans*) NH₄⁺:K⁺ (Fig. 5), and a greater curvature to *I/V* relationships obtained when contrasting NH₄Cl concentrations are present on either side of the channel (Fig. 4). In addition, the 3B2S model was unable to simulate precisely the complex relationship between *E_{rev}* and cation concentration when assayed in equimolar (*cis:trans*) NH₄⁺:K⁺ (Fig. 5*I*). In particular, it was unable to simulate the trend for *E_{rev}* to become less negative at cation concentrations between 300 mM and 1 M. It is possible that a more complex energy-barrier model, for example, one composed of four energy barriers and three energy wells (a 4B3S model), could provide a better fit to both *I/V* relationships and the complex relationship between *E_{rev}* and cation concentration when assayed in equimolar NH₄⁺ (*cis*):K⁺ (*trans*)). However, for the most part, the simple 3B2S model simulates the data well.

PHYSIOLOGICAL ROLE(S) OF THE CHANNEL

The physiological role of the channel studied in this paper will be determined by its tissue location, selectivity and regulation by voltage and/or chemical effectors. Since we have used whole roots for the preparation of plasma-membrane vesicles, the tissue location of the channel is unclear. However, a K⁺ current with similar properties to the voltage-independent K⁺ channel studied in PLB is present in protoplasts of epidermal cells from rye roots (White & Lemtiri-Chlieh, 1995). This 'instantaneous' K⁺ current has been associated with the voltage-independent K⁺ channel on the combined bases of: (i) its insensitivity to voltage, (ii) its low selectivity between monovalent cations and (iii) its unique pharmacology (White & Lemtiri-Chlieh, 1995).

The voltage-independent K⁺ channel is relatively nonselective among monovalent cations, especially when these cations are present at high concentrations (Fig. 5*I*; White & Tester, 1992; White & Lemtiri-Chlieh, 1995; White & Ridout, 1995). In PLB, it shows neither inactivation nor voltage-dependent P_o (Fig. 2; White & Tester, 1992), although some control of P_o by (permeant) ions is indicated by differences in P_o when assayed in the presence of symmetrical 100 mM KCl ($P_o = 0.8$) and 100 mM NH₄Cl ($P_o = 0.63$). These properties allow the channel to facilitate both the influx and efflux of monovalent cations, the direction of transport being dependent upon the electrochemical gradient on a particular cation. This is determined both by the trans-plasma membrane voltage difference (E_m) and the concentration gradient of the cation. In nonsaline environments, the monovalent cation with the highest concentration in both the soil solution and the cytoplasm of the cell is K⁺ (Marschner, 1995). This fact, together with the improved selectivity for K⁺ against Na⁺ at low cation concentrations (White & Ridout, 1995), suggest that the K⁺ flux will dominate the current through this channel. For this reason, it has been suggested that the voltage-independent K⁺ channel may function to stabilize E_m at a negative value close to the Nernst (equilibrium) potential for potassium (E_K ; White & Lemtiri-Chlieh, 1995) in a manner analogous to its counterparts in animal cells (Hille, 1992). This function is vital if the root cell is to compensate electrically for the many electrogenic transport processes occurring at the plasma membrane, not only as roots explore the soil and take up mineral nutrients but also as they respond to stimuli triggering the influx of signaling ions such as Ca²⁺ (Tyerman & Schachtman, 1992; White & Lemtiri-Chlieh, 1995).

The channel may also have a role in the mineral nutrition of the plant since it can potentially mediate the influx and accumulation of essential monovalent cations or nitrogen in the form of NH₄⁺. The annual average NH₄⁺ concentration in the soil solution of an arable soil approximates 50 μM (Marschner, 1995). But the instanta-

neous NH₄⁺ concentration in the soil solution may vary substantially, from submicromolar to millimolar concentrations, depending upon fertilizer application (Marschner, 1995). The membrane potential required for channel-mediated NH₄⁺ uptake (a voltage more negative than E_{NH4} , at a given extracellular NH₄⁺ concentration can be estimated if cytoplasmic NH₄⁺ concentration is known. For example, assuming the ionic strength of the cytoplasm to be 200 mM E_{NH4} of -186, -130, and -83 mV can be calculated for root cells of rice plants with cytoplasmic concentrations of 3.72, 20.55 and 30.08 mM NH₄⁺ grown in nutrient solutions containing 2, 100 and 1000 μM NH₄⁺, respectively (Wang et al., 1993a). These values compare with measurements of membrane potential of -116 and -89 mV in identical root cells of rice plants grown at 2 and 100 μM NH₄⁺ (Wang et al., 1994) and an estimated membrane potential of between -80 and -100 mV for plants grown at 1000 μM NH₄⁺ based on the apparent relationships between NH₄⁺ influx (Wang et al., 1993b) and membrane depolarization (Wang et al., 1994) with increasing extracellular NH₄⁺. This implies that, since the apparent potentials measured by impalement electrodes may be 20 to 50 mV more positive than actual plant cell resting potentials (*for discussion consult* Gassmann, Ward & Schroeder, 1993; Gassmann & Schroeder, 1994; Schroeder et al., 1994), channel-mediated NH₄⁺ uptake is feasible at extracellular NH₄⁺ concentrations above about 100 μM and that the voltage-independent K⁺-channel in the plasma membrane of rye root cells can mediate NH₄⁺ uptake in well fertilized soils. Furthermore, under these conditions net NH₄⁺ uptake can be maintained by the rapid assimilation of NH₄⁺ into amides and amino acids (Lee & Ratcliffe, 1991). Similarly, the removal of other monovalent cations from the cytoplasm will enable their net uptake and accumulation. Unfortunately, the ability to accumulate a variety of monovalent cations via this channel is not without its drawbacks: the accumulation of Na⁺ in saline environments or a toxic monovalent cation such as Cs⁺ in a polluted soil could be harmful to the plant.

This work was supported by the Biotechnology and Biological Sciences Research Council. I thank my colleagues at HRI East Malling, especially Mr. Martin Ridout for assisting me with AJUSTE and Mr. Ian Calvert for producing the figures presented in this paper.

References

- Alvarez, O., Villarroel, A., Eisenman, G. 1992. Calculation of ion currents from energy profiles and energy profiles from ion currents in multibarrier, multisite, multioccupancy channel models. *Methods Enzymol.* **207**:816-854
- Bertl, A., Anderson, J.A., Slayman, C.L., Gaber, R.F. 1995. Use of *Saccharomyces cerevisiae* for patch-clamp analysis of heterologous membrane proteins: characterisation of Kat1, an inward-rectifying K⁺ channel from *Arabidopsis thaliana*, and comparison with en-

ogenous yeast channels and carriers. *Proc. Natl. Acad. Sci. USA* **92**:2710–2705

Bertl, A., Felle, H., Bentrup, F.-W. 1984. Amine transport in *Riccia fluitans*: Cytoplasmic and vacuolar pH recorded by a pH-sensitive microelectrode. *Plant Physiol.* **76**:75–78

Cao, Y., Ward, J.M., Kelly, W.B., Ichida, A.M., Gaber, R.F., Anderson, J.A., Uozumi, N., Schroeder, J.I., Crawford, N.M. 1995. Multiple genes, tissue specificity, and expression-dependent modulation contribute to the functional diversity of potassium channels in *Arabidopsis thaliana*. *Plant Physiol.* **109**:1093–1106

Deane-Drummond, C.E. 1986. Some regulatory aspects of [¹⁴C]methylamine influx into *Pisum sativum* L. Feltham First seedlings. *Planta* **169**:8–15

Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. John Wiley and Sons, New York

Gassmann, W., Schroeder, J.I. 1994. Inward-rectifying K⁺ channels in root hairs of wheat. A mechanism for aluminum-sensitive low-affinity K⁺ uptake and membrane potential control. *Plant Physiol.* **105**:1399–1408

Gassmann, W., Ward, J.M., Schroeder, J.I. 1993. Physiological roles of inward-rectifying K⁺ channels. *Plant Cell* **5**:1491–1493

Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, Massachusetts

Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores. *J. Gen. Physiol.* **72**:409–442

Kochian, L.V., Lucas, W.J. 1988. Potassium transport in roots. *Adv. Bot. Res.* **15**:93–178

Kochian, L.V., Lucas, W.J. 1993. Can K⁺ channels do it all? *Plant Cell* **5**:720–721

Kosola, K.R., Bloom, A.J. 1994. Methylammonium as a transport analog for ammonium in tomato (*Lycopersicon esculentum* L.). *Plant Physiol.* **105**:435–442

Lee, R.B., Ratcliffe, R.G. 1991. Observations on the subcellular distribution of the ammonium ion in maize root tissue using in-vivo ¹⁴N-nuclear magnetic resonance spectroscopy. *Planta* **183**:359–367

Maathuis, F.J.M., Sanders, D. 1993. Energization of potassium uptake in *Arabidopsis thaliana*. *Planta* **191**:302–307

Maathuis, F.J.M., Sanders, D. 1994. Mechanism of high-affinity potassium uptake in roots of *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. USA* **91**:9272–9276

Marini, A.-M., Vissers, S., Urrestarazu, A., André, B. 1994. Cloning and expression of the *MEP1* gene encoding an ammonium transporter in *Saccharomyces cerevisiae*. *EMBO J.* **13**:3456–3463

Marschner, H. 1995. Mineral Nutrition of Higher Plants. Second edition. Academic Press, London

Ninnemann, O., Jauniaux, J.-C., Frommer, W.B. 1994. Identification of a high affinity NH₄⁺ transporter from plants. *EMBO J.* **13**:3464–3471

Presland, M.R., McNaughton, G.S. 1986. Whole plant studies using radioactive 13-nitrogen. IV. A compartmental model for the uptake and transport of ammonium ions by *Zea mays*. *J. Exp. Bot.* **37**:1619–1632

Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Butterworths Scientific Publications, London

Rubio, F., Gassmann, W., Schroeder, J.I. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. *Science* **270**:1660–1663

Schachtman, D.P., Schroeder, J.I. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. *Nature* **370**:655–658

Schachtman, D.P., Schroeder, J.I., Lucas, W.J., Anderson, J.A., Gaber, R.F. 1992. Expression of an inward-rectifying potassium channel by the *Arabidopsis KAT1* cDNA. *Science* **258**:1654–1658

Schroeder, J.I., Ward, J.M., Gassmann, W. 1994. Perspectives on the physiology and structure of inward-rectifying K⁺ channels in higher plants: Biophysical implications for K⁺ uptake. *Annu. Rev. Biophys. Biomol. Struct.* **23**:441–471

Tyerman, S.D., Schachtman, D.P. 1992. The role of ion channels in plant nutrition and prospects for their genetic manipulation. *Plant Soil* **146**:137–144

Uozumi, N., Gassmann, W., Cao, Y., Schroeder, J.I. 1995. Identification of strong modifications in cation selectivity in an *Arabidopsis* inward rectifying potassium channel by mutant selection in yeast. *J. Biol. Chem.* **270**:24276–24281

Vale, F.R., Volk, R.J., Jackson, W.A. 1988. Simultaneous influx of ammonium and potassium into maize roots: kinetics and interactions. *Planta* **173**:424–431

Wang, M.Y., Glass, A.D.M., Schaff, J.E., Kochian, L.V. 1994. Ammonium uptake by rice roots. III. Electrophysiology. *Plant Physiol.* **104**:899–906

Wang, M.Y., Siddiqi, M.Y., Ruth, T.J., Glass, A.D.M. 1993a. Ammonium uptake by rice roots. I. Fluxes and subcellular distribution of ¹³NH₄⁺. *Plant Physiol.* **103**:1249–1258

Wang, M.Y., Siddiqi, M.Y., Ruth, T.J., Glass, A.D.M. 1993b. Ammonium uptake by rice roots. II. Kinetics of ¹³NH₄⁺ influx across the plasmalemma. *Plant Physiol.* **103**:1259–1267

White, P.J. 1993. Relationship between the development and growth of rye (*Secale cereale* L.) and the potassium concentration in solution. *Ann. Bot.* **72**:349–358

White, P.J. 1995. Separation of K⁺- and Cl⁻-selective ion channels from rye roots on a continuous sucrose density gradient. *J. Exp. Bot.* **46**:361–376

White, P.J., Lemtiri-Chlieh, F. 1995. Potassium currents across the plasma membrane of protoplasts derived from rye roots: a patch-clamp study. *J. Exp. Bot.* **46**:497–511

White, P.J., Ridout, M. 1995. The K⁺ channel in the plasma membrane of rye roots has a multiple ion residency pore. *J. Membrane Biol.* **143**:37–49

White, P.J., Tester, M.A. 1992. Potassium channels from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers. *Planta* **186**:188–202